University: Annamalai  University
Course: THEORY OF COMPUTATION
Subject : THEORY OF COMPUTATION
Year of  Question Paper : 2010
Reg. No. ________                                                                                                                                                      
(Karunya Institute of
Technology and Sciences)
(Declared as Deemed to be University under Sec.3 of
the UGC Act, 1956)
End Semester Examination –
November/December 2010   
Subject Title:THEORY OF COMPUTATION                                                                       
Time: 3 hours
Time: 3 hours
Subject Code:09CS301                                                                                                          
Maximum Marks: 100
Maximum Marks: 100
 
                                                                                                                                                                                                                                                
Answer
ALL questions (5 x 20 = 100 Marks)
1.         Compulsory:
Find a
deterministic acceptor equivalent to

where  is given as follows (see Table).
is given as follows (see Table).
 is given as follows (see Table).
is given as follows (see Table).| 
States/∑ | 
a | 
b | 
| 
àq0 | 
q0, q1 | 
q2 | 
| 
q1 | 
q0 | 
q1 | 
|  | 
-- | 
q0, q1 | 
2.    a.  Give a regular expression for representing the set L of strings
in which every 0 is    immediately
followed by at least two 1’s.                                                                                                                (10)
b.    Prove that
the regular expression  also describes the
same set of strings.                                                                                                                                                                                               (10)
 also describes the
same set of strings.                                                                                                                                                                                               (10)
 also describes the
same set of strings.                                                                                                                                                                                               (10)
 also describes the
same set of strings.                                                                                                                                                                                               (10)
(OR)
3.         Construct an FA
equivalent to the regular expression
                                  (0 + 1)*(00 +
11)( 0  + 1)*
4.         If
G is the grammar S à
SbS|a, show that G is ambiguous.
(OR)
5.         Show
that L = {ap|p is a prime} is not a context-free language.
6.         Consider
the following productions:
For the string aaabbabbba,
find the
a.      
Leftmost derivation,
b.     
Rightmost derivation, and
c.      
Parse tree.
(OR)
7.         Show
that the grammar S à a|abSb|aAb,
A à bS|aAAb is ambiguous.  
8.    Let  where P consists of S à aAB, S à bBA,
A à bS, A à bS,
where P consists of S à aAB, S à bBA,
A à bS, A à bS, 
 where P consists of S à aAB, S à bBA,
A à bS, A à bS,
where P consists of S à aAB, S à bBA,
A à bS, A à bS, 
A àa, BàaS, B à b.
For the grammar
mentioned above, construct a deterministic pda accepting L(G) and
a leftmost derivation of abbab.
(OR)
9.         Design
a Turing machine M to recognize the language {1n2n3n
| n ≥ 1}..
 
 
 
 
 
 
 
 
 
0 comments:
Pen down your valuable important comments below