Wednesday, February 3, 2016

GATE-2016 Exams: CS GATE-2013 Solved paper

GATE-2016 Exams: CS GATE-2013 Solved paper
Are you looking GATE-2016 study materials along with old solved questions ? Here is GATE 2013 year solved questions for Computer Science CS GATE-2013 Solved paper. Answer of each question is provided. Prepare well for the upcoming GATE examinations to get a better valid score.

1 Consider a hard disk with 16 recording surfaces(0-15)having 16384 cylinders (0-16383)and each cylinder cont ains 64 sectors (0-63). Data storage capacity in each sector is 512 bytes.
Data are organized cylinder–wise and the addressing format is <cylinder no., sector no.>. A fi le of size 42797 KB is stored in the diskand the starting disk location of th e file is <1200, 9, 40>. What is the cylinder number of the last sector of the file, if it is stored in a contiguous us manner?

(A) 1281
(B) 1282
(C) 1283
(D) 1284
Ans: (D)


2 Consider er the following sequence of micro–operations
MBR-PC
MAR-X
PC-Y
Memory-MBR

3 Which one of the following is a possible operation performed by this sequence?
(A) Instruction fetch
(B) Operand fetch
(C) Conditional branch
(D) Initiation of interrupt service
Ans: (D)

Exp: PC content is stored i n memory y via MBR and PC gets new address from Y. It represents a function call (routine), which is matching with interrupt service initiation

4 The line graph L(G) of a simple graph G is defined as follows:
•There is exactly one vertex v(e) in L(G) for each edge e in G.
•For any two edges e and e in G, L(G) has an edge between v(e) and v(e ), if and only i f e and e are incident with the same vertex in G.Which of the following statements is/are TRUE?
(P) The line graph of a cycle is a cycle.
(Q) The line graph of a clique is a clique.
(R) The line graph of a planar graph is planar.
(S) The line graph of a tree is a tree.
(A) P only (B) P and R only (C) R only
(D) P, Q and S only
Ans: (B)

5 Suppose the instruction set architecture of the processor has only two registers. The only allowed compiler optimization is code motion, which moves statements from one place to another while preserving correctness. What is the minimum number of spills to memory in the compiled code?
(A) 0
(B) 1
(C) 2
(D) 3
Ans: (C)

6 What is the minimum number of registers needed in the instruction set architecture of the processor to compile this code segment without any spill to memory? Do not apply any optimization other than optimizing register allocation
(A) 3
(B) 4
(C) 5
(D) 6
Ans: (B)

7 Complete the sentence:
Universalism is to pa rti cularism as diffuseness is to
(A) specificity
(B) neutrali ty
(C) generality
(D) adapt ation
Ans: (A)
The relation is that of antonyms

8. Were you a bird, you in the sky.
(A) would fly
(B) shall fly
(C) should fl y
(D) shall have flown
Ans: (A)

9 Which one of the following options is the closest in meaning to the word given below?
Nadir
(A) Highest
(B) Lowest
(C) Medium
(D) Integ ration
Ans: (B)
Nadir in the lowest point on a curve

10. Choose the grammatically INCORRECT sentence:
(A) He is of Asian origin
(B) They b belonged to Afri ca
(C) She is an Euro pean
(D) They migrated from India to Australia
Ans: (C)

11. What will be the maximum sum of 44, 42, 40, ... ?
(A) 502
(B) 504
(C) 506
(D) 500
Ans: (C)

12 Out of all the 2-digit integers between 1 and 100, a 2-digit number has to be selected at random. What is the prob ability that the selected numb er is not divisible by 7?
(A) 13/90
(B) 12/90
(C) 78/90
(D) 77/90
Ans: (D)

GATE-2016 Exams: Engineering Mathematics Solved Important Questions

GATE-2016 Exams: Engineering Mathematics Solved Important Questions
Are you looking for solved questions for GATE Engineering Mathematics ? You can collect here all important questions taken form GATE previous years papers such as GATE 2011, GATE 2010, etc. This will be useful for upcoming GATE exams 2016. Download the solved GATE questions for Maths below.

GATE exam 2016
GATE Engineering Mathematics
Exam Date: 6th and 7th Feb 2016

GATE 2011

1. With K as a constant, the possible solution for the first order differential equation  dy/dx = e-3x  is

a. - 1/3 e-3x + K (Ans)

b. - 1/3 e3x + K

c. -3e-3x + K

d. -3e-x + K

Ans :     dy/dx = e-3x

dy = e-3x dx

Taking integration on both sides,

y = e-3x /-3 + K = -  1/3 e-3x + K

2. Roots of the algebraic equation x3 + x2 + x  + 1 = 0 are

a. +1, +j - j

b. +1, -1,+1

c. 0,0,0

d. -1, +j, -j (Ans)

Ans :  x3 + x2 + x + 1 = 0

(x2 + 1) (x +1) = 0

x2 + 1 = 0    ⇒  x =  ± j

x + 1 = 0     ⇒  x =  -1

                                                   

3. The Fourier series expansion f(t) = a0 + ∞Σn = 1   an cos nωt + bn sin nωt of the periodic signal shown below will contain the following non-zero terms

                                                       f (t)                                      

                                                                                                         
                                                                                                     
                                                                                                                                                                                                                                                             

                                                                                                  t

                                                     0



a. a0 and bn, n = 1, 3, 5, ... ∞

b. a0, an and bn, n = 1, 2, 3, ... ∞

c. a0 and an, n = 1, 2, 3, ... ∞

d. a0 and an, n = 1, 3, 5, ... ∞ (Ans)

Ans : The given signal satisfies even symmetry so bn = 0 and it also satisfies half wave symmetry so, it will contain only odd harmonics.



GATE 2010


4. The value of the quantity P, where P = ∫10 xex dx, is equal to

a. 0

b. 1 (Ans)

c. e

d. 1/e

Ans :      P = ∫10 xex dx

= [x ∫ex dx]10 - ∫10 1.ex dx

= e - e + e0 = 1

5. Divergence of the three-dimensional radial vector field  →r  is —

a. 3 (Ans)

b. 1/r

c. Îi  +  ? +  ^ k

d. 3( Î  +  ?  +  ^ k )

Ans :   The radial vector in 3-D space is →r  =  xÎ  +  y? +  z^ k

Now, div  →r =  ?. →r

= (Î  ∂/∂x + ? ∂/∂y + ^ k∂/∂z )(xÎ  +  y? +  z^ k)

= ∂/∂x (x) + ∂/∂y (y) + ∂/∂z (z)

= 1 + 1 + 1 = 3

6. The period of the signal x (t) = 8 sin (0.8 ?t + ?/4) is

a. 0.4 ?s

b. 0.8 ?s

c. 1.25 s

d. 2.5 s (Ans)

Ans : The given signal  x (t) = 8 sin (0.8?t + ?/4)

We know that, imperiodic function

f (t +T) = f (t), where T = period

Then,     x (t +T) = x (t)

⇒ 8 sin {0.8 ?(t +T) + ?/4} = 8 sin (0.8 ?t +?/4)

⇒ sin {0.8 ?(t +T) + ?/4} = sin {2? + (0.8 ?t + ?/4)}

{? sin (2? + θ) = sin θ, period of sin θ is 2?}

⇒ 0.8 ?(t +T) + ?/4 = 2? + 0.8 ?t + ?/4

⇒ 0.8 ?t + 0.8 T? + 2? + 0.8 ?t

⇒    T = 2? /0.8? ⇒ 2/0.8

⇒    T (period) = 2.5s



GATE 2009

7. The trace and determinant of a 2 * 2 matrix are known to be - 2 and - 35 respectively. Its eigen values are

a. - 30 and - 5

b. - 37 and - 1

c. - 7 and 5  (Ans)

d. 17.5 and - 2


Ans :  Given, trace of 2 * 2 matrix = -2 and determinant = -35

Let      A = [a11  a12]
                 a21   a22  2 * 2

then, trace of matrix

A =  Addition of principal diagonal elements

- 2 = a11 + a22                                 ....(i)
and ?A? = a11 . a22 - a12 . a21 = - 35        .....(ii)
Also the eigen values of [A] = Trace of matrix A
λ 1+ λ 2 = - 2                        ........(iii)
So, option (c) will satisfy Eq. (iii).

Hence, eigen values are - 7 and 5.



GATE 2008

8. X is a  uniformly distributed random variable that takes values between O and 1. The value of E{X3} will be

a. 0

b. 1/8

c. 1/4  (Ans)

d. 1/2



Ans :  Since, X is a uniformly distributed random variable between (0,1) = (a, b)

Then, probability density density function

f (x) = 1/(b - a) ⇒  1/(1 - 0)  ⇒ 1

So,  f (x) = {1,      0 < x < 1
                   0,  other value of x

So, E(x3) = ∫1x = 0  x3 . f (x) dx

=  ∫10  x3 . 1 dx

= [x4 /4] 10

= 1/4 (1 - 0)

= 1/4

9. The characteristic equation of a (3 * 3)  matrix P is defined as  a (λ) = ?λ|  - P? = λ3 +  λ2 + 2λ + I = 0
If I denotes identity matrix, then the inverse of matrix P will be

a. (P2 + P + 2I)

b. (P2 + P + I)

c.  - (P2 + P + I)

d.  - (P2 + P + 2I)  (Ans)

Ans :  Given, the characteristic equation is

 λ3 +  λ2 + 2λ + I = 0             ..........(i)
We know that, By Caylay - Hamilton theorem Every square matrix satisfies its characteristic equation.
Then, from Eq. (i), putting (λ = P),
P3 + P2  + 2P + I = 0

Operating (P-1) on both sides,

(P-1 P3) + (P-1 P2) + 2(P-1 P) + (P-1 I) = (0.P-1)

⇒    P2 + P + 2I + P -1 = 0

⇒    P -1 = - (P2 + P + 2I)



10. If the rank of a (5 * 6) matrix Q is 4, then which one of the following statements is correct?

a. Q will have four linearly independent rows and four linearly independent columns  (Ans)

b. Q will have four linearly independent rows and five linearly independent columns

c. QQT will be invertible

d. QT Q will be invertible


Ans :  Given, f ([Q]5 *6) = 4 {/→ denotes Rank of} Then, [Q] must have four linearly independent rows and four linearly independent columns.  Because the matrix Q  of order (4 * 4) will be non- singular matrix i.e., [Q] 4*4
⇒     ?Q?4*4  ≠ 0

GATE 2007

11.  x = [x1 x2......xn]T is an n-tuple non-zero vector. The n * n matrix V = xxT

a. has rank zero (Ans)

b. has rank 1

c. is orthogonal

d. has rank n



Ans :  Given, x = [x1, x2, ....xn]T

Since, x is an n-tuple non-zero vector, that is, x is a non-singular matrix of order n, so it rank should be n.

i.e,         I (x) = n

The vector (xT) also have rank (n) because transpose of any matrix does not altered its rank.

Then, matrix [v = x T'] must have the rank n, i. e., I(v) = n, because resultant of the multiplication of two same rank matrices also has the same rank as the rank of multiplicative matrix.



GATE 2005

12. In the matrix equation px = q, which of the following is a necessary condition for the existence of at least one solution for the unknown vector x ?

a.  Augmented matrix [pq] must have the same rank as matrix p  (Ans)

b.  Vector q must have only non - zero elements

c.  Matrix p must be singular

d.  Matrix p must be square

Ans :  The matrix equation px = q will have solutions if it is consistent.

So, for consistency of matrix equation is Rank of [pq]  = Rank of [p]

where, [pq] → Augmented matrix



13. If P and Q are two random events, then which of the following is true?

a. Independence of P and Q implies that probability  (P ? Q) = 0

b. Probability (P ∪Q) ≥ Probability (P) + Probability (Q)

c. If P and Q are mutually exclusive, then they must be independent

d. Probability (P ? Q) ≤ Probability (P) (Ans)



Ans :  Given, P and Q are two random events, then

(a)  Independence of P and Q, Prob (P ? Q) = Prob (P) . Prob (Q)

If two events P and Q are mutually disjoint, then Prob (P ? Q) = 0

So, option (a) is incorrect.

(b) For two events P and Q,

Prob (P ∪Q) = Prob (P) + Prob (Q) - Prob (P ? Q)

Here, Prob (P ∪Q) ≤ Prob (P) + Prob (Q)

So, option (b) is incorrect.

(c) There is no relation between mutually exclusive and independent for two random variables P and Q.

So, option (c) is incorrect.

(d) And Prob (P ? Q) ≤ Prob (P) which is true for every events.

So, option (d) is correct.

14. If S = ∫∞1 x-3 dx, then S has the value

a. -1/3

b. 1/4

c. 1/2 (Ans)

d. 1

Ans :      S = ∫∞1 x-3 dx

= [x-2 /-2]∞1  =  - 1/2[1/x2]∞1

= 1/2 [1/∞ -  1/1] = - 1/2(0-1)

= 1/2



15. The solution of the first order differential equation  x '(t) = -3x(t), x(0) = x0  is

a. x (t) = x0e-3t (Ans)

b. x (t) = x0e-3

c. x (t) = x0e-1/3

d. x (t) = x0e-t



Ans :       x '(t) = -3x (t)  ⇒  dx/dt = -3x

⇒      ∫dx/x = -∫3 dt             (on integrating)

⇒    log x = -3t + log c

⇒    x = ce-3t                .........(i)

But at (t = 0) and (x = x0),

⇒    x0 = ce0     ⇒ (c = x0)

Then, from Eq. (i),  x = x0 e-3t

or          x (t) =  x0 e-3t



GATE 2011

16. The two vectors [1,1,1] and [1,a,a2], where a = (-  1/2 + j √3/2) are

a. orthonormal

b. orthogonal (Ans)

c. parallel

d. collinear

Ans :  These two vectors is orthogonal because the dot product of these two vectors is zero.    



17. The matrix [A] =   2     1  is decomposed into a product of a lower triangular matrix [L] and an upper triangular matrix [U].
                               4    -1    

The properly decomposed [L] and [U] matrices respectively are


a.       1    0    and   1     1
         4    -1            0   -2

b.       2    0    and    1    1
          4   -1            0     1

c.       1     0    and   2     1
         4     1            0    -1

d.       2    0             1   0.5       (Ans)
          4   -3    and   0      1



Ans :   [A] = [L] [U]


=     2    0   1  0.5    =     2+0   1+0
        4  -3   0    1            4+0   2-3

=     2    1
        4  -1



18. The function f (x) = 2x - x2 + 3  has

a. a maximum at x = 1 and a minimum at x = 5

b. a maximum at x = 1 and a minimum at x = -5

c. only a maximum at x = 1   (Ans)

d. only a minimum at x = 1



Ans :  f (x) = 2x - x2 + 3

f' (x) = 2 - 2x = 0

∴    x = 1

at     x = 1, f" (x) = - 2 < 0  ⇒    f" (x) < 0

So,  f (x) having only a maximum at x = 1.



GATE 2010

19. At t = 0, the function f (t) = sin t/ t  has

a. a minimum

b. a discontinuity

c. a point of inflection

d. a maximum  (Ans)

Ans :  Given,  f (t) = sin t/ t ;

At t = 0, first we will check continuity of the function.

LHL f (0 - h)  =   lim      sin (0 - h)
                       h → 0     (0 - h)

                    =  lim      - sin h                 [ ?  sin (-θ) = - sin θ]
                      h → 0       -h


              = 1                                   [ ?   lim    sin θ/θ = 1]
                                                            h → 0

RHL   f (0 + h) =   lim     sin (0 + h)/(0 + h)
                         h → 0

                     =   lim      sin h/h  = 1
                         h → 0

and          f(0) = 1

since,       LHL = RHL = f(0)

So, the function is continuous at t = 0.

Now, we check the function is maximum or minimum.

            f '(t)  =  1/t cos t -1/ t2 sin t

and       f "(t) = 1/t sin t - 1/t2 cos t - 1/t2 cos t + 2 sin t/ t3

                    =  - sin t /t -  2 cos t/ t2 + 2 sin t/t3


For max or min value of f (x),

                              f '(x) = 0

            cos t /t - sin t/ t2 = 0

⇒                        tan t/t = 1

Now,  lim  f "(t) = - lim      sin t/t
        t → 0            t → 0

         +  lim      (2 sin t - 2 t cos t)/t3        [∴(0/0) form]
            t → 0

        = - 1 +  lim      (2 cos t - 2 cos t + 2 t sin t)/3 t2         [? Using L hospital's rule]
                   t → 0

        =  - 1 +  lim        2 t sin t/3 t
                    t → 0

        =  - 1 + 2/3    lim        sin t/t
                           t → 0

        = -1 + 2/3 * 1 = - 1/3 < 0    (Maxima)

    So, function   f (t) is maximum at t = 0.

20. A box contains 4 white balls and 3 red balls. In succession, two balls are randomly selected and removed from the box. Given that the first removed ball is white, the probability that the second removed ball is red is

a. 1/3

b. 3/7

c. 1/2   (Ans)

d. 4/7



Ans : Probability (IInd ball is red/lst ball is white)

=  P (IInd is red and Ist is white)
            P (Ist ball is white)

= P (Ist ball is white and IInd ball is red)
            P (Ist ball is white)

    (Probability of Ist ball is white)

=     x (Probability of II nd ball is red)  
        (Probability of Ist ball is white)

= Probability of IInd ball is red

= 3/6 = 1/2

Want GATE-2016 question paper ? Click on this link, http://www.indianuniversityquestionpapers.com/2016/02/gate-2016-civil-engineering-question.html

GATE-2016 Exam on 7-2-2016: Civil Engineering Solved Previous Years Questions

GATE-2016 Exam on 7-2-2016: Civil Engineering Solved Previous Years Questions
Are you going to appear for GATE 2016 examinations for Civil Engineering on 07th Feb 2016? Want to refer some solved question papers that are previously asked ? You can here practice old questions so that you can able to grab the GATE exam little bit easy. Collect all questions that are taken from GATE-2013 and GATE 2012 exam papers. It includes, Civil, Mechanical, Electrical, Electronics and engineering mathematics questions for practice. Answers are provided along the options.

Exam Board: GATE-2016
Subject: Civil Engineering
Type of Study Materials: Previous Years Solved Questions
Date of Exam: 07th Feb 2016

1.     Reaction at support b of the structure is
(a)    P    -    Ans
(b)    P√ 2
(c)    P/√ 2
(d)    P/2

2.     Rotational stiffness-coefficient, K11 for the frame having two members of equal EI/l is given by :
(a)   5 EI/l
(b)   6 EI/l
(c)  7 EI/l   -    Ans
(d)   8 EI/l

3.    A hydraulic turbine develops a power of 104 metric horse power while running at  a speed of 100 revolutions per minute, under a head of 40 m. Its specific speed is nearest to one of the following :
(a)    100  -    Ans
(b)    628
(c)    523
(d)    314

4.    Horizontal stiffness coefficient, K11 of bar ab is given by :
(a)  A EIl √ 2    -    Ans
(b)   A EI 2 l
(c)   A EIl
(d)   2 A EIl

5.    Bending moments at joint b and c of the portal frame are respectively :
(a)    + p l/2, - p l/2
(b)    + p l/2, + p l/2   -    Ans
(c)    + p l/4, - p l/4
(d)    + p l/4, +p l/4

6.     If the deformation of the truss-members are as shown in parentheses, the rotation of the member bd is :
(a)   0.5 x 10 -2 radian
(b)   1.0 x 10-2 radian
(c)   1.5 x 10-2 radian
(d)  2.0 x 10-2 radian   -    Ans

7.     If YY is the centroidal axis of a T beam-section subjected to plastic moment, Mp, the neutral axis lies,
(a)   above the line ZZ
(b)   between the lines YY and ZZ  -    Ans
(c)   between the lines XX and YY
(d)   below the lines XX

8.   The correct reinforcement -details at the corner of a rectangular water tank, in horizontal plane is shown by :
     
       Ans : (d)

9.    If j = nominal diameter of reinforcing bar, fs = compressive stress in the bar and fbd = design bond stress of concrete, the anchorage length, La of straight bar in compression is equal to :
(a)    La =Ø Is
                  fbd    
(b)    La = Ø fs
                 2 fbd    
(c)    La =  Ø fs
                  pie fbd
(d)   La = Øfs              -    Ans
                 4 fbd

10.    Generally the maximum deflection/ span ratio of a steel mmber should not exceed
(a)    1/750
(b)    1/500
(c)    1/325         -    Ans
(d)    1/250

11.    The effective length of a circular electric pole of length L and constant diam,eters erected on ground is,
(a)    0.80 L
(b)    1.20 L
(c)    1.50L
(d)    2.00 L      -    Ans


12.    In IS:800(1984) the permissible compressive stress in column is based on :
(a)    Euler formula
(b)    Secant formula     -    Ans
(c)    Rankine -Gordan formula
(d)    Rankine -Merchant formula

13.    Generally (fatigue life of welded steel structure/fatigue life of riveted steel structure) ratio is,
(a)    smaller than 1  -    Ans
(b)    equal to 1
(c)    greater than 1
(d)    greater than 2.1

14.    The particle size distribution curves are extremely useful for the classification of
(a)    fine grained soils
(b)    coarse grained soils
(c)    both coarse grained and fine grained soils  -    Ans
(d)    silts and clays

15.    Which one of the following relations, is not correct ?
(a)    e    =    n
                   1-n
(b)    ysat   = G +e y w
                      1+e
(c)   n =  e                   -    Ans
               1-e
(d)    e = W G
                  S
        Where e-void ratio n-porosity, W-water content, S-degree of saturation Ysat saturated unit weight of soil, yw - unit weight of water

16.    Seepage force per unit volume (i) can be expressed as
(a)     i ywL
(b)    iL
(c)    ywh
(d)    i yw           -    Ans
        Where i-hydraulic gradient, L-Length of soil sample, h-hydraulic head yw-unit weight of water.

17.    The Piezometric head at point C, in the experimental set-up shown in figure when the flow takes place under a constant head through the soils A and B is  
(a)    0 com
(b)    40 cm
(c)    80 cm
(d)    120 cm           -    Ans

18.    Mechanical stabilization requires :
(a)    mixing of two or more types of natural soils           -    Ans
(b)    addition of chemicals to soils
(c)    addition of lime to soils
(d)    addition of cementing material to soils

19.    Piping in soil occurs when
(a)    the soil is highly porous
(b)    sudden change in permeability occurs
(c)    effective pressure becomes zero           -    Ans
(d)    the soil is highly stratified

20.   The soils most susceptible to liquefaction are :
(a)    saturated dense sands
(b)    saturated fine and medium sands of uniform particle size            -    Ans
(c)    saturated clays of uniform size
(d)    saturated gravels and cobbles

21.    The most commonly used sampler for obtaining a disturbed sample of the soil is
(a)    split spoon sampler           -    Ans
(b)    open drive sampler
(c)    piston sampler
(d)    thin wall shelby tube sampler

22.    For the determination earth pressure Coulomb's wedge theory assumed that
(a)    the back of wall is smooth and vertical      
(b)    the soil is non-homogeneous and anisotropic
(c)    the slip surface is circular
(d)    the wall surface is rough    -    Ans

23.    The wall shown in given below has failed. The cause of failure or the error made in the design of the failded wall is :
(a)    deep slip surface failure
(b)    overturning    -    Ans
(c)    no proper drainage in the clay backfill
(d)    translational failure

24.    A foundation is considered as shallow if its depth is :
(a)     less than 1 metre
(b)    greater than its width
(c)   equal to or less than its width    -    Ans
(d)    greater than 1 metre

25.    For the strip footing on a saturated clay, for the given failure surface in the given figure , the bearing capacity equation takes the form :
(a)    5.7 Cu
(b)    5.14 Cu        -    Ans
(c)    4 pie Cu
(d)    2 pie Cu
        Where Cu - undrained shear strength
                    jv - angle of internal friction
                    B   - width of strip footing
                   qc  -  ultimate bearing capacity of soil

26.    The value of bearing capacity factor for cohesion Nc, for piles as per Meyerhof, is taken as :  
(a)    6.2
(b)   12.0  
(c)    9.0
(d)    5.14       -    Ans

27.    Negative skin friction occurs when :
(a)    an upward drag exists in the pile
(b)    the surrounding soil settles more than the pile
(c)    the pile passes continuously through a firm soil
(d)    the driving operation begins

28.    If, for a fluid in motion, pressure at a point is same in all directions, then the fluid is :
(a)    a real fluid
(b)   a Newtonian fluid      -    Ans
(c)    an ideal fluid
(d)    a non-Newtonian fluid

29.    A vertical triangular plane area, submerged in water, with one side in the free surface, vertex downward and altitude 'h' has the pressure centre below the free surface by
(a)    h/4
(b)    h/3
(c)   2h/3       -    Ans
(d)    h/3

30.   The Prandtl mixing length for turbulent flow through pipes is
(a)    independent of shear stress   -    Ans
(b)    a universal constant
(c)    zero at the pipe wall  
(d)    independent of radial distance from pipe axis
 
31.    In network of pipes
(a)    the algebraic sum of discharges around each circuit is zero
(b)    the algebraic sum of (pressure + datum) head drops around each circuit is zero   -    Ans
(c)     the elevation of hydraulic grade line is assumed for each junction point
(d)    elementary circuits are replaced by equivalent pipes

32.    Flow at critical depth takes place in an open channel when
(a)    for a given specific energy, discharge is maximum
(b)   for a given discharge, specific energy is maximum    -    Ans
(c)    discharge is minimum for a given specific energy
(d)    discharge is maximum for a given specific force

33.    On an immersed body in a flowing fluid the lift force is :
(a)    due to buoyant force
(b)   always in the opposite direction to gravity   -    Ans
(c)    due to Wake phenomenon
(d)    the dynamic fluid -force component normal to approach velocity

34.    The repeating variables in dimensional analysis should :
(a)    include the dependent variable   -    Ans
(b)    have amongst themselves all the basic dimensions
(c)    be derivable from one another
(d)    exclude one of the basic dimensions

35.    At a rated capacity  of 44 Cumecs, a centrifugal pump develops 36 m  of head when operating at 1450 rpm. Its specific speed is :
(a)    654   -    Ans
(b)    509
(c)    700
(d)    90

36.    X-xomponent of velocity in a 2-D incompressible flow is given by u=y2+4 xy. If Y-component of velocity 'v' equals zero at y = 0, the expression for 'v' is given by
(a)    4y
(b)    2y2
(c)   -2y2    -    Ans
(d)    2xy

37.    Water table drops by 3m in an irrigable land of 50 hectar. If porosity and specific retention are 0.30 and 0.10 respectively, the change in storage in hectare-meter is :
(a)    15
(b)   30   -    Ans
(c)    45
(d)    60

38.    The most important water quality parameter for domestic use of water is
(a)    carbonate hardness
(b)   non - carbonate hardness   -    Ans
(c)    coliform group of organisms
(d)    Chlorides

39.    Presence of fluoride in water greater than permissible level of 1.5 mg/l causes
(a)    cardiovascular disease
(b)    methemoglobinemia
(c)    hepatitis
(d)    dental fluorosis   -    Ans

40.    Chemical oxygen Demand (COD) of a sample is always greater than Biochemical Oxygen Demand (BOD) since it represents :
(a)    biodegradable organic matter only
(b)   biodegradable and non-degradable organic matter  -    Ans
(c)    non-biodegradable organic matter
(d)    inorganic matter

41.    A waste water sample diluted to 100 times with aeration water had an initial dissolved oxygen (DO) of 7.0 mg/l and after 5 days of incubation at 20o C, the DO was zero. The BOD of waste water is :
(a)    700 mg/l  -    Ans
(b)    100 mg/l
(c)    cannot be determined
(d)    7 mg/l

42.    The treatment that should be given to the water from a deep tube well is :
(a)    pre-settling only
(b)    coagulation and flocculation only
(c)    filtration only
(d)    disinfection only  -    Ans

43.    The drop manholes are provided in a sewerage system when there is
(a)    change in alignment of sewer line
(b)    change in size of sewers
(c)    change in the elevation of ground level  -    Ans
(d)    change from gravity system to pressure system

44.    The removal of dissolved organic matter occurs in
(a)    Slow sand filters
(b)   trickling filters-    Ans
(c)    rapid sand filters
(d)    dual media filters

45.    The main constituents of gas generated during the anaerobic digestion of sewage sludge are :
(a)    carbon dioxide and methane-    Ans
(b)    methane and ethane
(c)    carbon dioxide and carbon monoxide
(d)    carbon monoxide and nitrogen

46.    A single rapid test to determine the pollutional status of river water is :
(a)    biochemical oxygen demand
(b)    chemical oxygen demant
(c)    total organic solids     -    Ans
(d)    dissolved oxygen

47.    Presence of excess nitrates in river water indicates :
(a)    recent pollution of water with sewage
(b)   past pollution of water with sewage-    Ans
(c)    immediate pollution of water with sewage
(d)    no pollution of water with sewage

48.    One of the probable causes of rutting on flexible pavements is
(a)    excessive stripping of binder material from the wearing course
(b)    use of flaky aggregates in the wearing course
(c)    inadequate compaction of pavement layers    -    Ans
(d)    high wind speeds

49.    An important purpose of prime coats is to :
(a)    promote the bond between the base and the wearing courses
(b)    promote the adhesion between an existing wearing surface and a subsequent wearing surface    -    Ans
(c)    promote the bond between the sub-base cause and the sub-grade
(d)    increase the stability of the sub-grade

50.    Flexible pavements derive stability primarily from :
(a)    aggregate interlock, particle friction and cohesion    -    Ans
(b)    cohesion alone
(c)    the binding power of bituminous materials
(d)    the flexural strength of the surface course

Search Everything Here